## **The Off-Axis Detector**

Measuring  $\theta_{13}$  with the NUMI beam

Roger Rusack
The University of Minnesota.

#### Talk Outline:

- Goals
- Site.
- Detector Concepts.
- Beam.
- Physics Potential
- Status and Schedule.

### **Goals**

- Primary goal: Find evidence for  $v_{\mu} \rightarrow v_{e}$  determining  $\sin^{2}(2\theta_{13})$  to a factor of 2.
- ◆ Longer Term: Determine mass hierarchy.
- ◆ Very Long term: Precision measurement of the CP-violating phase

## $\nu_{\rm u}$ -> $\nu_{\rm e}$ Appearance.

- ◆ Go off the axis of the NuMI beam to get a low-energy narrow-band beam near the atmospheric oscillation maximum (proposed by Brookhaven in 1995)
  - $v_e$  appearance maximum
  - $v_{\mu}$  CC largely disappears
  - Higher-energy NC disappears
- ◆ Build a detector optimized for electron detection
- ◆ Increase the beam flux × detector mass
- **♦** Work at a long baseline to maximize matter effects

### **NuMI Beam**



## Site of Off-Axis Experiment.

Detector will be on the surface located at a maximum distance form Fermilab and still inside the US.

Ash River is the currently preferred site. Permissions are being sought to proceed.

 $L = 820 \ km$ 



NOON2004 Tokyo February 12th 2004.





### **Neutrino Energy Spectrum**





Off the main beam axis there is a narrow energy spread.

#### **Detectors**

- **♦** Sampling calorimeter.
- **♦** *Large Scale 50 ktons.*
- ◆ Need clean low-energy electron identification
  - WOOD. It's low cost, abundant and nearby.
- ◆ On surface, not in a mine.
  - Can do this since beam spill is 10 micro-seconds and coincident background rates are small.
- ♦ Design to be low cost.

Two detectors proposed scintillator and resistive plate chambers both use particle board as the passive material.

#### The Scintillator Detector.

- ♦ Height 15 m
- ♦ Width 30 m
- ◆ Scintillator Active Detector
- Particle Board Passive Material (density .6 - .7)
- ♦ Alternating horizontal and vertical detector planes
- ◆ 1/3 radiation length between detector planes



6 = 1 plane5300 = detector





### **Scintillator Container**



#### 1 module – Extruded PVC

- 32 cells/module
- 1 scintillator layer/plane
- 0.09 tons/module (unfilled)



Wavelength shifting fiber – 0.8 mm

U loop - 4 times photons at far end as single fiber



#### 1 cell

- 1.5 mm outer wall
- 1 mm inner wall
- WLS read out for scintillator



Use pixelated APD to readout strips.

## **RPC Concept**

Use BELLE glass RPC detector as a fundamental element.

Paired detectors to get maximum efficiency.

Basic glass chamber size 2.84 × 2.34 m<sup>2</sup>.

Six chambers are ganged together to make 15m wide detector.



Basic detector structure



- ◆ RPC's arranged in two layers to get full efficiency 4 layers of glass,
- ◆ 2 layers of strips on Particle Board, ground plane on opposite side.



NOON2004 Tokyo February 12th 2004.



NOON2004 Tokyo February 12th 2004.

#### **Method**



and number of hits per plane etc.

## **Sensitivity**

Full simulation with scintillator detector and beam assuming  $\Delta m^2$ =0.0025,  $\sin^2 2\eta_{23}$ =1 and  $\sin^2 2\eta_{13}$ =0.1.

 $v_{\mu}$  suppressed at  $10^{-5}$ .

Neutral currents at  $10^{-3}$ .

Beam  $v_e$  at  $2 \cdot 10^{-3}$ .

Detection of  $v_e$  from oscillations 18%.

Signal/ Background =  $25.3 \pm 0.4$ 

## What Beam do we Expect.

- ◆ MINOS will start next year with 2 × 10<sup>20</sup> protons on target/yr.
- ◆ By 2009 expect this to have doubled.
- ◆ Further increases in intensity will require replacement of the 8 GeV booster with the super-conducting LINAC, the "Proton Driver" see next talk. This could add another factor of 5.

## $P(v_u \rightarrow v_e)$ (in Vacuum)

$$P(\nu_{\mu} \rightarrow \nu_{e}) = P_{1} + P_{2} + P_{3} + P_{4}$$

$$- P_{1} = \sin^{2}(\theta_{23}) \sin^{2}(2\theta_{13}) \sin^{2}(1.27 \text{ Δm}_{13}^{2} \text{ L/E})$$

$$- P_{2} = \cos^{2}(\theta_{23}) \sin^{2}(2\theta_{12}) \sin^{2}(1.27 \text{ Δm}_{12}^{2} \text{ L/E})$$

$$- P_{3} = J \sin(\delta) \sin(1.27 \text{ Δm}_{13}^{2} \text{ L/E})$$

$$- P_{4} = J \cos(\delta) \cos(1.27 \text{ Δm}_{13}^{2} \text{ L/E})$$
where  $J = \cos(\theta_{13}) \sin(2\theta_{12}) \sin(2\theta_{13}) \sin(2\theta_{23}) \text{ x}$ 

$$\sin(1.27 \text{ Δm}_{13}^{2} \text{ L/E}) \sin(1.27 \text{ Δm}_{12}^{2} \text{ L/E})$$

## $P(\nu_{\mu} \rightarrow \nu_{e})$ (in Matter)

#### $P(\nu_{\mu} \rightarrow \nu_{e})$ is modified by matter effects

- ♦ In matter,  $P_1$  will be approximately multiplied by  $(1 \pm 2E/E_R)$
- $P_3$  and  $P_4$  will be approximately multiplied by  $(1 \pm E/E_R)$ ,
- ♦ + sign is for neutrinos with normal mass hierarchy or antineutrinos with inverted mass hierarchy. This is a ± 23% percent effect for NuMI

while it is about  $\pm 10\%$  for JPARC 1.

## **Magnitudes**

- ◆ For the long baseline measurement the off-axis, P1, P3 and P4 are all the same order of magnitude.
- We will measure an effective " $P(v_{\mu} \rightarrow v_{e})$ ".
- Reactor experiments measure directly  $P(\nu_{\mu} \rightarrow \nu_{\rm e})$  but have no sensitivity to hierarchy or to .

Combine with results from other experiments to obtain hierarchy and .

## **Probability Plots**

- Assume a value of  $P(v_u \rightarrow v_e)$ and then show:
  - The possible values of  $\sin^2(2\theta_{13})$ ,  $\operatorname{sign}(\Delta m_{13}^2)$ , and  $\delta$ consistent with this measurement.



Inverted hierarchy

## $P(\nu_{\mu} \rightarrow \nu_{e})$ at 820 km









# 3 $\sigma$ Discovery Potential for $\nu_{\mu} \rightarrow \nu_{e}$





# $\nu_{\mu} \rightarrow \nu_{e}$ at $3\sigma$ Discovery



#### **Status**

- ◆ R&D proposal submitted.
- ◆ Progress Report submitted to the Fermilab PAC in December.
- ◆ PAC reaction:
  - "This can potentially become the future flagship experiment in an exciting neutrino physics program at Fermilab."
  - "Given the physics potential of the experiment and the significant detector cost involved, the Committee feels that some assistance from Fermilab for time-critical R&D needs leading to the proposal are justified."
- ◆ Full proposal will in March.
- Could start construction Oct 2006.
- ◆ Could start taking data with 25% of detector in 2008.